it-swarm.it

Perché 2 * (i * i) più veloce di 2 * i * i in Java?

Il seguente programma Java richiede in media tra 0,50 e 0,55 secondi per essere eseguito:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

Se sostituisco 2 * (i * i) con 2 * i * i, occorrono tra 0,60 e 0,65 secondi per l'esecuzione. Come mai?

Ho eseguito ciascuna versione del programma 15 volte, alternando le due. Ecco i risultati:

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

L'esecuzione più veloce di 2 * i * i ha richiesto più tempo rispetto alla corsa più lenta di 2 * (i * i). Se fossero entrambi efficienti, la probabilità che ciò accada sarebbe inferiore a 1/2 ^ 15 * 100% = 0,00305%.

781
Stefan

C'è una leggera differenza nell'ordinamento del bytecode.

2 * (i * i):

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

vs 2 * i * i:

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

A prima vista questo non dovrebbe fare la differenza; semmai la seconda versione è più ottimale dal momento che usa uno slot in meno.

Quindi abbiamo bisogno di scavare più in profondità nel livello più basso (JIT)1.

Ricorda che JIT tende a srotolare piccoli anelli in modo molto aggressivo. Effettivamente osserviamo uno srotolamento 16x per il caso 2 * (i * i):

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

Vediamo che c'è 1 registro che è "rovesciato" nello stack.

E per la versione 2 * i * i:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

Qui osserviamo molto più "spilling" e più accessi allo stack [RSP + ...], a causa di più risultati intermedi che devono essere preservati.

Quindi la risposta alla domanda è semplice: 2 * (i * i) è più veloce di 2 * i * i perché la JIT genera un codice Assembly più ottimale per il primo caso.


Ma ovviamente è ovvio che né la prima né la seconda versione sono utili; il ciclo potrebbe davvero trarre beneficio dalla vettorizzazione, poiché ogni CPU x86-64 ha almeno il supporto SSE2.

Quindi è un problema dell'ottimizzatore; come spesso accade, si srotola in modo troppo aggressivo e si spara ai piedi, perdendo nel contempo varie altre opportunità.

Infatti, le moderne CPU x86-64 suddividono ulteriormente le istruzioni in micro-op (μops) e con funzioni come la rinomina dei registri, le cache μop e i buffer del ciclo, l'ottimizzazione del loop richiede molta più finezza rispetto a una semplice srotolamento per prestazioni ottimali. Secondo la guida all'ottimizzazione di Agner Fog :

Il guadagno di prestazioni dovuto alla cache di μop può essere considerevole se la lunghezza dell'istruzione media è superiore a 4 byte. Si possono prendere in considerazione i seguenti metodi per ottimizzare l'uso della cache di μop:

  • Assicurati che i loop critici siano abbastanza piccoli da adattarsi alla cache di μop.
  • Allinea le voci del ciclo e le voci delle funzioni più importanti di 32.
  • Evitare lo srotolamento del loop non necessario.
  • Evita le istruzioni che hanno un tempo di caricamento extra
    . . .

Per quanto riguarda i tempi di caricamento - anche il colpo L1D più veloce costa 4 cicli , un registro extra e μop, quindi sì, anche alcuni accessi alla memoria danneggeranno le prestazioni in cicli stretti.

Ma torniamo all'opportunità di vettorizzazione - per vedere quanto velocemente può essere, possiamo compilare un'applicazione C simile con GCC , che la vettorializza a titolo definitivo (viene mostrato AVX2, SSE2 è simile)2:

  vmovdqa ymm0, YMMWORD PTR .LC0[rip]
  vmovdqa ymm3, YMMWORD PTR .LC1[rip]
  xor eax, eax
  vpxor xmm2, xmm2, xmm2
.L2:
  vpmulld ymm1, ymm0, ymm0
  inc eax
  vpaddd ymm0, ymm0, ymm3
  vpslld ymm1, ymm1, 1
  vpaddd ymm2, ymm2, ymm1
  cmp eax, 125000000      ; 8 calculations per iteration
  jne .L2
  vmovdqa xmm0, xmm2
  vextracti128 xmm2, ymm2, 1
  vpaddd xmm2, xmm0, xmm2
  vpsrldq xmm0, xmm2, 8
  vpaddd xmm0, xmm2, xmm0
  vpsrldq xmm1, xmm0, 4
  vpaddd xmm0, xmm0, xmm1
  vmovd eax, xmm0
  vzeroupper

Con i tempi di esecuzione:

  • SSE: 0,24 s, o 2 volte più veloce.
  • AVX: 0,15 s, o 3 volte più veloce.
  • AVX2: 0,08 s, o 5 volte più veloce.

1Per ottenere l'output Assembly generato da JIT, ottenere un debug JVM ed eseguire con -XX:+PrintOptoAssembly

2La versione C è compilata con il flag -fwrapv, che consente a GCC di trattare l'overflow di interi con segno come wrap-around a due complementi.

1118
rustyx

Quando la moltiplicazione è 2 * (i * i), la JVM è in grado di calcolare la moltiplicazione per 2 dal ciclo, risultando in questo codice equivalente ma più efficiente:

int n = 0;
for (int i = 0; i < 1000000000; i++) {
    n += i * i;
}
n *= 2;

ma quando la moltiplicazione è (2 * i) * i, la JVM non la ottimizza poiché la moltiplicazione per una costante non è più giusta prima dell'aggiunta.

Ecco alcuni motivi per cui penso che sia così:

  • L'aggiunta di un'istruzione if (n == 0) n = 1 all'inizio del ciclo comporta che entrambe le versioni siano efficienti, poiché il calcolo della moltiplicazione non garantisce più che il risultato sia lo stesso
  • La versione ottimizzata (calcolando la moltiplicazione per 2) è esattamente veloce quanto la versione 2 * (i * i)

Ecco il codice di prova che ho usato per trarre queste conclusioni:

public static void main(String[] args) {
    long fastVersion = 0;
    long slowVersion = 0;
    long optimizedVersion = 0;
    long modifiedFastVersion = 0;
    long modifiedSlowVersion = 0;

    for (int i = 0; i < 10; i++) {
        fastVersion += fastVersion();
        slowVersion += slowVersion();
        optimizedVersion += optimizedVersion();
        modifiedFastVersion += modifiedFastVersion();
        modifiedSlowVersion += modifiedSlowVersion();
    }

    System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
    System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
    System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
    System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
    System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}

private static long fastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long slowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

private static long optimizedVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += i * i;
    }
    n *= 2;
    return System.nanoTime() - startTime;
}

private static long modifiedFastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long modifiedSlowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

E qui ci sono i risultati:

Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s
125
Runemoro

Codici Byte: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html Byte codes Viewer: https://github.com/Konloch/bytecode-viewer

Sul mio JDK (Windows 10 64 bit, 1.8.0_65-b17) posso riprodurre e spiegare:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

Produzione:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

Allora perché? Il codice byte è questo:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

La differenza è: Con parentesi (2 * (i * i)):

  • Spinta pila const
  • Spingi locale in pila
  • Spingi locale in pila
  • moltiplicare la cima della pila
  • moltiplicare la cima della pila

Senza parentesi (2 * i * i):

  • Spinta pila const
  • Spingi locale in pila
  • moltiplicare la cima della pila
  • Spingi locale in pila
  • moltiplicare la cima della pila

Caricare tutti sullo stack e poi tornare indietro è più veloce che passare dalla messa in pila al funzionamento.

40
DSchmidt

Kasperd chiesto in un commento della risposta accettata:

Gli esempi Java e C utilizzano nomi di registro piuttosto diversi. Entrambi gli esempi utilizzano AMD64 ISA?

xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2

Non ho abbastanza reputazione per rispondere a questo nei commenti, ma questi sono gli stessi ISA. Vale la pena sottolineare che la versione GCC utilizza la logica integer a 32 bit e la versione compilata JVM utilizza internamente la logica integer a 64 bit.

Da R8 a R15 ci sono solo i nuovi registri X86_64 . EAX to EDX sono le parti inferiori dei registri generali RAX-RDX. La parte importante nella risposta è che la versione GCC non è srotolata. Esegue semplicemente un giro del ciclo per loop di codice macchina effettivo. Mentre la versione JVM ha 16 round del loop in un loop fisico (basato sulla risposta di Rustyx, non ho reinterpretato l'Assembly). Questo è uno dei motivi per cui vengono utilizzati più registri poiché il corpo del loop è in realtà 16 volte più lungo.

34
Puzzled

Anche se non direttamente correlato all'ambiente della domanda, solo per curiosità, ho fatto lo stesso test su .NET Core 2.1, x64, modalità di rilascio.

Ecco il risultato interessante, che conferma la simile fonomena (in un altro modo) che accade nel lato oscuro della forza. Codice:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

Risultato:

2 * (i * i)

  • risultato: 119860736, 438 ms
  • risultato: 119860736, 433 ms
  • risultato: 119860736, 437 ms
  • risultato: 119860736, 435 ms
  • risultato: 119860736, 436 ms
  • risultato: 119860736, 435 ms
  • risultato: 119860736, 435 ms
  • risultato: 119860736, 439 ms
  • risultato: 119860736, 436 ms
  • risultato: 119860736, 437 ms

2 * i * i

  • risultato: 119860736, 417 ms
  • risultato: 119860736, 417 ms
  • risultato: 119860736, 417 ms
  • risultato: 119860736, 418 ms
  • risultato: 119860736, 418 ms
  • risultato: 119860736, 417 ms
  • risultato: 119860736, 418 ms
  • risultato: 119860736, 416 ms
  • risultato: 119860736, 417 ms
  • risultato: 119860736, 418 ms
29
Ünsal Ersöz

Ho ottenuto risultati simili:

2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736

Ho ottenuto ilSTESSOrisultati se entrambi i loop erano nello stesso programma, o ognuno era in un file .Java separato/.class, eseguito su una corsa separata.

Infine, ecco un decodificatore javap -c -v <.Java> di ciascuno:

     3: ldc           #3                  // String 2 * (i * i):
     5: invokevirtual #4                  // Method Java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: iload         4
    30: imul
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

vs.

     3: ldc           #3                  // String 2 * i * i:
     5: invokevirtual #4                  // Method Java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: imul
    29: iload         4
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

FYI -

Java -version
Java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)
20
paulsm4

Ho provato un JMH usando l'archetipo di default: ho anche aggiunto una versione ottimizzata basata su spiegazione di Runemoro .

@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
  @Param({ "100", "1000", "1000000000" })
  private int size;

  @Benchmark
  public int two_square_i() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * (i * i);
    }
    return n;
  }

  @Benchmark
  public int square_i_two() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += i * i;
    }
    return 2*n;
  }

  @Benchmark
  public int two_i_() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * i * i;
    }
    return n;
  }
}

Il risultato è qui:

Benchmark                           (size)  Mode  Samples          Score   Score error  Units
o.s.MyBenchmark.square_i_two           100  avgt       10         58,062         1,410  ns/op
o.s.MyBenchmark.square_i_two          1000  avgt       10        547,393        12,851  ns/op
o.s.MyBenchmark.square_i_two    1000000000  avgt       10  540343681,267  16795210,324  ns/op
o.s.MyBenchmark.two_i_                 100  avgt       10         87,491         2,004  ns/op
o.s.MyBenchmark.two_i_                1000  avgt       10       1015,388        30,313  ns/op
o.s.MyBenchmark.two_i_          1000000000  avgt       10  967100076,600  24929570,556  ns/op
o.s.MyBenchmark.two_square_i           100  avgt       10         70,715         2,107  ns/op
o.s.MyBenchmark.two_square_i          1000  avgt       10        686,977        24,613  ns/op
o.s.MyBenchmark.two_square_i    1000000000  avgt       10  652736811,450  27015580,488  ns/op

Sul mio PC ( Core i7 860 - non sta facendo nulla di molto diverso dalla lettura sul mio smartphone):

  • n += i*i quindi n*2 è il primo
  • 2 * (i * i) è il secondo.

La JVM chiaramente non sta ottimizzando allo stesso modo di quanto faccia un umano (basato sulla risposta di Runemoro).

Ora, leggendo bytecode: javap -c -v ./target/classes/org/sample/MyBenchmark.class

Non sono esperto di bytecode, ma siamo iload_2 prima di imul: probabilmente è qui che si ottiene la differenza: posso supporre che JVM ottimizzi la lettura di i due volte (i è già qui, e non c'è bisogno di caricarlo di nuovo) mentre in il 2*i*i non può.

16
NoDataFound

Più di un addendum. Ho riproposto l'esperimento utilizzando l'ultima Java 8 JVM di IBM:

Java version "1.8.0_191"
Java(TM) 2 Runtime Environment, Standard Edition (IBM build 1.8.0_191-b12 26_Oct_2018_18_45 Mac OS X x64(SR5 FP25))
Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)

E questo mostra risultati molto simili:

0.374653912 s
n = 119860736
0.447778698 s
n = 119860736

(secondi risultati usando 2 * i * i).

Abbastanza interessante, quando si esegue sulla stessa macchina, ma utilizzando Oracle Java:

Java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

i risultati sono in media un po 'più lenti:

0.414331815 s
n = 119860736
0.491430656 s
n = 119860736

Per farla breve: anche qui il numero di versione minore di HotSpot è importante, poiché le sottili differenze all'interno dell'implementazione JIT possono avere effetti notevoli.

13
GhostCat

Osservazione interessante usando Java 11 e spegnendo il ciclo di srotolamento con la seguente opzione VM:

-XX:LoopUnrollLimit=0

Il ciclo con l'espressione 2 * (i * i) produce un codice nativo più compatto1:

L0001: add    eax,r11d
       inc    r8d
       mov    r11d,r8d
       imul   r11d,r8d
       shl    r11d,1h
       cmp    r8d,r10d
       jl     L0001

in confronto con la versione 2 * i * i:

L0001: add    eax,r11d
       mov    r11d,r8d
       shl    r11d,1h
       add    r11d,2h
       inc    r8d
       imul   r11d,r8d
       cmp    r8d,r10d
       jl     L0001

Versione Java:

Java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)

Risultati del benchmark:

Benchmark          (size)  Mode  Cnt    Score     Error  Units
LoopTest.fast  1000000000  avgt    5  694,868 ±  36,470  ms/op
LoopTest.slow  1000000000  avgt    5  769,840 ± 135,006  ms/op

Codice sorgente del benchmark:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {

    @Param("1000000000") private int size;

    public static void main(String[] args) throws RunnerException {
        Options opt =
            new OptionsBuilder().include(LoopTest.class.getSimpleName())
                                .jvmArgs("-XX:LoopUnrollLimit=0")
                                .build();
        new Runner(opt).run();
    }

    @Benchmark
    public int slow() {
        int n = 0;
        for (int i = 0; i < size; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int fast() {
        int n = 0;
        for (int i = 0; i < size; i++) {
            n += 2 * (i * i);
        }
        return n;
    }
}

1 - VM opzioni utilizzate: -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -XX:LoopUnrollLimit=0

13
Oleksandr

I due metodi di aggiunta generano un codice byte leggermente diverso:

  17: iconst_2
  18: iload         4
  20: iload         4
  22: imul
  23: imul
  24: iadd

Per 2 * (i * i) vs:

  17: iconst_2
  18: iload         4
  20: imul
  21: iload         4
  23: imul
  24: iadd

Per 2 * i * i.

E quando si utilizza un JMH benchmark come questo:

@Warmup(iterations = 5, batchSize = 1)
@Measurement(iterations = 5, batchSize = 1)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MyBenchmark {

    @Benchmark
    public int noBrackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int brackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * (i * i);
        }
        return n;
    }

}

La differenza è chiara:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: <none>

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  380.889 ± 58.011  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  512.464 ± 11.098  ms/op

Quello che osservate è corretto, e non solo un'anomalia del vostro stile di benchmarking (cioè nessun riscaldamento, vedi Come scrivo un micro-benchmark corretto in Java? )

In esecuzione di nuovo con Graal:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  335.100 ± 23.085  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  331.163 ± 50.670  ms/op

Vedete che i risultati sono molto più vicini, il che ha senso, dal momento che Graal è un compilatore nel complesso migliore, più moderno.

Quindi questo dipende solo da quanto bene il compilatore JIT è in grado di ottimizzare un particolare pezzo di codice, e non ha necessariamente una ragione logica per farlo.

5
Jorn Vernee